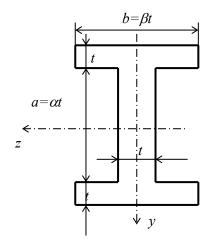
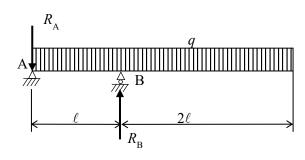

Problème 1 : Pour la section définie ci-contre calculer les moments d'inertie principaux I_x et I_y




Problème 2 : Pour la section montrée dans la figure déterminer I_x , I_y et I_p

Problème 3 : Une poutre en I repose sur 2 appuis; elle est soumise à une charge continue q.

- a) Donner l'expression littérale, en fonction de t, α et β des grandeurs suivantes: I = moment d'inertie par rapport à l'axe z, W = moment de résistance par rapport à l'axe z, S = moment statique de la moitié du profil par rapport à l'axe z.
- b) Représenter le diagramme du moment et de l'effort tranchant, en indiquant les valeurs particulières, avec : $\ell = 1$ m et q = 50 kN/m
- c) Pour la valeur absolue max du moment, calculer t avec : $\sigma_{\rm max}=120\,{\rm MPa}$, $\alpha=5$ $\beta=4$
- d) La section étant ainsi définie, déterminer l'allure et la valeur maximale de la contrainte de cisaillement.

